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Ranyart R. Suárez1,2, Mario Graff2, Juan J. Flores1

1 Division de Estudios de Posgrado,
Facultad de Ingenieria Eléctrica,
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Abstract. In recent years, a variety of semantic operators have been
successfully developed to improve the performance of GP. This work
presents a new semantic operator based on the semantic crossover based
on the partial derivative error. The operator presented here uses the
information of the second partial derivative to choose a crossover point
in the second parent. The results show an improvement with respect to
previous semantic operator.
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1 Introduction

In the community there has been an increasing interest in the use of semantic
operators in Genetic Programming (GP) because these kind of operators use
the information provided by the behavior of individuals to produce offprings,
i.e. these use the semantics (phenotype) of individuals. On the other hand,
traditional genetic operators work by manipulating the syntactic representations
(i.e., genotype) of the individuals assuring that the offspring generated from
the parents will be syntactically different from their them. Meanwhile, semantic
operators assure that the offspring generated is semantically different from them.

From all the approaches proposed in the literature, we can distinguish two
classes. The first class is called geometric operators (or semi-geometric), these
operators are called geometric because the crossover operator, under a metric
d : R two parents p1 and p2 produce offspring that lie in the d-segment between
the parents. Geometric operators have certain characteristics, for example, they
assure that the offspring cannot be less fitted than the less fitted of the parents
(i.e., they can not be worse than the worse of the parents). Examples of this
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class of operators are described in [4,5,7]. A detailed survey and review of this
class of operators can be found in [11,8].

The other class of operators is more general and is simply called semantic op-
erators because the operations to generate new individuals are driven by certain
rules or conditions constrained to the semantics of the generated individuals.
For example, in [1,2] the offspring is incorporated to the next generation only if
it is semantically different from its parents (forcing to have different semantics
among the population). These approaches were later extended to other domains
[6,10].

This work is based in a previous semantic crossover operator presented by
Graff et al. [3]. The main idea of their proposal is to compute the partial
derivative of the fitness function with respect to the node selected as the crossing
point in the first parent, and, with this information, chose the second cross-
ing point in the second parent. This can be accomplished by performing the
backpropagation algorithm (see [9]) in GP. The backpropagation algorithm is
typically used for training Artificial Neural Networks (ANNs), but its application
to GP is straightforward because GP and ANNs have some similarities. In GP,
the individuals are represented as trees; the output of the nodes are fed to other
nodes, just like the nodes of an ANN.

In [3] the first partial derivative of fitness function w.r.t. the crossing point
in the first parent is computed in order to know whether the output of the
subtree at that particular crossing point has to increase or decrease. With this
information, a search is performed in all the subtrees of the second parent; the
subtree with the closest output w.r.t. the first derivative is selected. For the rest
of this paper this methodology will be called GPPDE (Genetic Programming
with Partial Derivative Error).

The work presented in this paper is an extension of GPPDE. We propose to
compute the second partial derivative of the fitness function w.r.t. the crossing
point. The idea is that the information of the second derivative complement
the information given by the first derivative, consequently, the performance
obtained by a system using both derivatives will outperform the results achieved
by GPPDE.

The rest of the paper is organized as follows: Section 2 explains how to
compute the first and second partial derivatives in GP. Section 3 explains how to
interpret the information of partial derivatives in the construction of a crossover
operator. Section 4 presents the comparison of different crossover operators, and
Section 5 presents the conclusions.

2 Partial Derivatives in GP

GPPDE chooses two parents and one crossing point in one of the parents. Let
us assume that this crossing point in the first parent is node v, and the error
function is E. The semantic operator requieres to compute ∂E

∂v , which is the
partial derivative of the error function with respect to the node selected as
crossing point. Using backpropagation, the error can be propagated (using a
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supervised learning approach, where target values are known), until it reaches
the desired node (v).

The advantage of computing the derivative of the error function is that the
first derivative gives information about the error surface. For example, if ∂E

∂v has
positive sign, it means that output in node v is greater than the value needed
to minimize the error function, E. With this information, the crossing point in
the second father is selected by comparing the sign of ∂E

∂v with the output of all
subtrees in the parent, choosing the subtree that has similar sign output.

The main idea of this work is similar to GPPDE, that is, to propose a
semantic crossover method for GP, based on the derivative of the error function.
The semantic crossover method presented in this work uses the information
provided by the second derivative of the error function to select the crossing
point in the second parent (GPPDE uses the first derivative). We have called
this method GPPDE2 (Genetic Programming with 2nd. order Partial Derivative
error).

There are some conditions that need to be satisfied in order to compute
the second derivative: 1) the error function has to be derivable and the second
derivative of this function must exist and 2) the functions contained in the
function set have to be derivable. The error function used in this work is the
quadratic error (Equation (1)), where y is the desired output of the program
and ŷ is the current output. Note that E has first and second order derivatives
with respect to the output of the program these can be seen in Equations (2)
and (3).

E = (y − ŷ)2 (1)

∂E

∂ŷ
= −2(y − ŷ) (2)

∂2E

∂ŷ2
= 2 (3)

Before describing how the information of the first and second derivatives of
E is used, we need to describe how the derivatives are computed in GP using
the backpropagation algorithm.

2.1 Computing Partial Derivatives with the Backpropagation
Algorithm

Backpropagation algorithm consists of two steps: 1) the forward step and 2) the
backpropagation step. Consider the small program shown in Figure 1, and let us
compute the first partial derivative of the programs’ output with respect to node

x, i.e., ∂g(f(x))
∂x . To do so, we need to compute the output of each node and the

first derivative of the function contained in the node as well; this is the forward
step. Figure 2 shows the information stored in each node in the program.
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Fig. 1. GP program

Mathematically, the first and second derivatives of g(f(x)) with respect to

x are: ∂g(f(x))
∂x = g′(f(x))f ′(x) and ∂2g(f(x))

∂x2 = g′′(f(x))f ′(x)2 + g′(f(x))f ′′(x).
Note that all the terms needed to compute the first and second derivatives are
stored in the nodes after applying the forward step. The backpropagation step
consists in traversing the program backwards from the root to the selected node
(in this case node x) and computing the product between the information stored
in the nodes.

Fig. 2. Information stored in each node

Figure 3 shows how the backpropagation step is performed in order to com-

pute the terms ∂g(f(x))
∂x and ∂2g(f(x))

∂x2 . In Figure 3 (a), the backpropagation step
is shown to compute the first derivative. The backpropagation step computes the
products of the derivatives stored in the nodes; in this example, the products
between input 1 and g′(f(x)), and g′(f(x)) and f ′(x) are computed. The result

is g′(f(x))f ′(x), which is indeed the term ∂g(f(x))
∂x . This is basically the process

used by GPPDE to compute the first derivative of a function with respect to
some node.

In this work we extend the procedure mentioned above to compute the
second derivative. Whereas backpropagation in GPPDE sees one node at a time,
GPPDE2 requires to see two nodes at a time (in this example, nodes f and g).
With the information stored in these two nodes, two products are computed:
1) the product between the second derivative of the function in the first node
and the square first derivative of the function in the second node, and, 2) the
product between the first derivative of the function in the first node between
the second derivative of the function in the second node. Figure 3 b) depicts the
backpropagation step used by GPPDE2.

The following example allows to depict more clearly the process used to
compute the second derivative. Consider the program shown in Figure 4, this
program corresponds to ŷ = 1.5x2−0.7x+1.2. Suppose the program is chosen as
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Fig. 3. Backpropagation step to compute the first and second derivatives

the first parent in a crossover operation and the crossing point is node v, i.e., the
second constant −0.7. Let us assume that the inputs are x = [−1,−0.5, 0, 0.5, 1],
the backpropagation, in the forward step, computes the output of the pro-
gram, i.e., ŷ(x) = [3.4, 1.925, 1.2, 1.225, 2], and, also, stores the first and second
derivatives of each function as in Figure 2. In this example the training set is
T = [{−1, 1.9}, {−0.5, 1.175}, {0, 1.2}, {0.5, 1.975}, {1, 3.5}], therefore the error
is e = (y(x)− ŷ(x)) = [−1.5,−0.75, 0, 0.75, 1.5].

Fig. 4. Simple GP program

In the backward step the first elements that are needed are the first and
second order derivatives of the fitness function. In this example, the fitness
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function used is E = (y(x) − ŷ(x))2, the first and second order derivative of E

w.r.t. the program’s output are ∂E
∂ŷ(x) = −2(y(x)− ŷ(x)) = −2e and ∂2E

∂ŷ(x)2
= 2,

respectively. Figure 5 shows backward step used in GPPDE2. Note that in the
figure, the root node is the function E, which takes two arguments y and ŷ(x).
Additionally, the target y(x) and the part 1.5x2 of ŷ(x) are simplified and the
nodes involved in the process have been labeled (E, 0, 1, 2).

The steps depicted in Figure 5 are the following:

(a) Node E correspond to the fitness function and node 0 is the root of the
program. Following the example in Figure 3, the function in node E is g and
the function in node 0 is f . GPPDE computes the term
∂g(f(x))

∂x = −2e ∗ 1 = −2e and GPPDE2 computes the term
∂2g(f(x))

∂x2 = 2 ∗ 12 + 0 ∗ −2e = 2, these terms are propagated to node 0.
(b) Now, node 0 corresponds to g and node 1 corresponds to f. The terms

computed are: ∂g(f(x))
∂x = −2e ∗ 1 = −2e and ∂2g(f(x))

∂x2 = 2 ∗ 12 + 0 ∗−2e = 2,
these terms are propagated to node 1.

(c) Node 1 is g and node 2 is f function, the terms computed are: ∂g(f(x))
∂x =

−2e ∗ x = −2ex and ∂2g(f(x))
∂x2 = 2 ∗ x2 + 0 ∗ −2e = 2x2, these terms are

propagated to node 2.
d) The process stops because the propagated terms have finally reached the

parent node of v.

Fig. 5. Computing of partial second derivative of E function w.r.t. node v

When node v is reached, the propagated terms are: −2ex and 2x2. These
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values are indeed the first and second partial derivatives of E = (y−ax2−vx−c)2
w.r.t. to v. Equations 4 and 5 show the derivatives.

∂E

∂v
= 2(y − ax2 − vx− c)(−x) = −2ex (4)

∂2E

∂v2
=

∂

∂v
2(y − ax2 − vx− c)(−x) =

∂

∂v
2vx2 = 2x2 (5)

Note that the first and second derivatives stored in each node are vectors not
scalars. Besides, every time that the values are propagated, these values replace
the stored values in the next node.

3 Semantic Crossover Operator Using Partial Derivatives

GPPDE2 has computed the second partial derivative of the fitness function w.r.t.
the node selected as the crossing point. Since the fitness function is quadratic,
we decided to perform the newton method at the crossing point. The newton
method (Equation 6) minimizes the error contribution to function E provided
by the function that receives node v as an input.

Xn+1 = Xn − f ′(Xn) ∗ [f ′′(Xn)]−1 (6)

To demonstrate how the newton method works, let us perform the first
iteration in the previous example with the information:

– The samples x = [-1, -0.5, 0, 0.5, 1]
– The error e = [−1.5,−0.75, 0, 0.75, 1.5]
– Output of node v, Xn = [−0.7,−0.7,−0.7,−0.7,−0.7]
– First partial derivative ∂E

∂v = −2ex = [−3,−0.75, 0,−0.75,−3]

– Second partial derivative ∂2E
∂v2 = 2x2 = [2, 0.5, 0, 0.5, 2]

Since the output of node v is constant, let us take the sum of the first and
second partial derivatives (−7.5 and 5). The first iteration of the newton method
yields X1 = −0.7− −7.55 = −0.7+1.5 = 0.8. This iteration of the newton method
can be interpreted as the desired output from node v. So, the constant −0.7 has
to be changed to 0.8. In this case, the new individual would be
ŷ(x) = 1.5x2 + 0.8 + 1.2 which is indeed the target function for the example
(y(x)).

In practice, the crossover point can be any node (function, variable or con-
stant). Therefore, instead of taking the sum of partial derivatives, all the opera-
tions are done point to point between vectors, and, then, with X1, i.e. the first
iteration of the newton step, the crossover operator performs a search in all the
possible sub-trees of the second parent choosing the node whose output has a
minimum euclidean distance with X1. Equation 7 shows the crossover operator,
where X1 is the first iteration of newton step, Xj

i represents the ith element of

X1, Sj is the output of the jth sub-tree in the second parent and Sj
i is the ith

element of Sj .
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arg min
j

N∑
i

√
(X1

i − Sj
i )2 (7)

4 Results

One of the main applications of GP is symbolic regression. The problem of
symbolic regression consists in finding a mathematical model that best fits cer-
tain data. In this contribution, the testbed consists in 1,100 symbolic regression
problems used previously to test GPPDE in [3]. Each of the problems contained
in this set was built in the following way: 1) Two polynomials W (x) and Q(x)
were generated randomly choosing their degree in the range [2, 8] with random

real coefficients in the range [−10, 10], 2) A rational function y(x) = W (x)
Q(x) is

used to create the data. Each function y(x) was sampled 21 times uniformly
distributed in the range [−1, 1]. The goal here is use GP to create a model that
recreates the rational functions by fitting the sampled data.

Given that GPPDE2 uses more information than GPPDE, it is expected
that GPPDE2 exhibits better performance than GPPDE. The first derivative
used in GPPDE gives information about the direction in which the error will
decrease, in other words, the first derivative tell GPPDE if the output in the
subtree chosen for crossover has to be smaller or bigger. On the other hand,
the second derivative computed in GPPDE2, provides the step size needed to
minimize the error contribution for the subtree chosen for crossover.

Both GPPDE2 and GPPDE were run 20 times with the parameters shown
in Table 1. This means that each of the 1100 problems were run 20 times and 20
different performances were obtained. Then, these measures were sorted and the
median was chosen to be the final measure. We decided to choose the median
because for both algorithms, in some problems, there was noise.

Table 1. GP Parameters

Parameter Value

Population Size 1000
Number of Generations 50

Function Set (F) {+,−,×, /}
Terminal Set (T ) T = {x ∈ R}

Crossover rate 90%
Mutation rate 10%

Mutation depth random ∈ [1, 5]
Selection Tournament of size 2

Table 2 presents the results obtained by the GP systems tested. Additionally
to GPPDE2 and GPPDE, we decided to add a third column that represents
traditional Genetic Programming (GP). GP was added to the comparison in

94

Ranyart Rodrigo Suárez, Mario Graff and Juan J. Flores

Research in Computing Science 94 (2015)



order to demonstrate the differences in performance by performing traditional
crossover and the crossover with partial derivatives.

All of the three GP systems see the problem as a minimization problem. This
means that a performance closer to zero is better. The performance is given by
the squared error between the target and the program’s output. From Table 2 we
can see that GPPDE2 won in 556 of 1100 problems (50.55%) whereas GPPDE
won in 544 problems (49.45%) and GP did not have the best performance in
any problem. There is no important difference between the number of problems
won by GPPDE2 and GPPDE; however, there exists differences in performance.
The mean of medians for GPPDE2 is 0.2905 and it was a better overall result
than 0.5287 of GPPDE (a fitness closer to zero is better). Moreover, the standard
deviation of GPPDE2 (1.9985) was smaller than the GPPDE’s measure (5.9473)
indicating more consistent results.

Table 2. Results of GP Systems

GPPDE2 GPPDE GP

# of problems won 556 544 0
Mean of Medians 0.2905 0.5287 4.1425

Std. Deviation 1.9985 5.9473 24.6912

From these results it can be inferred that GPPDE2 obtained better results
than GPPDE. Given the number of problems that each algorithm won and
the small difference in these results, is reasonably to question if GPPDE2 is
indeed performing better than GPPDE. To answer this, we decided to measure
the difference in performance when some algorithm outperforms the other. We
measure the squared difference of performance between GPPDE2 and GPPDE
when one of the algorithms won, Table 3 presents this comparison. From the
table, it can be seen that when GPPDE2 has a better performance than GPPDE,
the margin between the two algorithms is about 1.5670, this margin is three
times bigger than the inverse case (when GPPDE has better performance than
GPPDE2) with 0.5108.

Table 3. Difference in performance for GPPDE2 and GPPDE

Method Difference in performance

GPPDE2 1.5670
GPPDE 0.5108

5 Conclusions

In this work, a new semantic crossover operator called GPPDE2 has been pre-
sented. This new method is and improved version of GPPDE, a previous crossover
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semantic method. The idea behind both algorithms is to compute the partial
derivatives of the error function with respect to some node (the node is selected
by the cross point) in the first parent. With this information, choose the second
cross point in the second parent. The main difference is that GPPDE computes
the first derivative and GPPDE2 computes the second derivative. Results show
that the crossover operator that uses the information of the second derivative
of the error function in order to choose the crossing point in the second parent
gives better results. Both semantic operators gave better results than using the
traditional crossover operator (both crossing points randomly chosen) for the
tested problems.

The results presented in this work open the possibility of further analysis in
order to explore the capabilities of GPPDE2, for example, increasing the number
of functions contained in the function set and analyze if this changes improve
the current performance.
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